IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 12, NO. 4, APRIL 2002 119

Resistive SIC-MESFET Mixer

Kristoffer Andersson, Joakim Eriksson, Niklas Rorsman, and Herbert Zivégmber, IEEE

Abstract—A single-ended silicon carbide resistive MESFET Intrinsic Blements Ry
mixer was designed and characterized. The mixer has a minimum  gaze L,
conversion loss of 10.2 dB and an input third order intercept point
of 35.7 dBm at 3.3 GHz. Chg

Index Terms—High-level mixer, intermodulation distortion, in- =
termodulation intercept point, resistive mixer, S-band, silicon car-
bide, wide bandgap semiconductors.

I. INTRODUCTION

HE major motivation for using microwave transistors pro-.
cessed on wide bandgap materials, such as silicon carbide -
(SiC) and gallium nitride, has traditionally been their capability
to handle high power densities. This has been demonstrated
in high-power amplifiers operating in the L-, S-, and X-bands
using SiC MESFETSs [1]. Of great importance in radar and com-

Small-signal equivalent circuit.

TABLE |
EXTRACTED MODEL PARAMETERS

munications systems is also the dynamic range; this is especially Cpg [fF] 47 || Ly [pH] 0
O \ . C,q LEF] 47 |[ Ly [pH] 17
true in wideband systems. Wide bandgap materials offers both C” [ZF] 540 | Ry TN 0.1
good power performance and dynamic range. Earlier work has Cds TEF] 18 Rds’mm O] [2.18 107
been done on silicon carbide Schottky diode high-level mixers ng [£F] 539 Vds’mf‘z,] ;0 29855
[2], [3], but none has been reported on FET devices. C Tl 290 pfk 16075
Cy [£fF] 410 || p2 1.0772

Il. SIC MESFET R, [ 2.5 || ps 0.38216

The transistors were processed in-house. The MESFET epi-  Ra_[{2] 3.1 ps 0.061671
structure was grown on a semi-insulating 4H-SiC substrate by R _L£] 0.001 | ps 0.003727
Cree, Inc. The MESFET structure consists of a Q.85p-buffer By [0 1]n K2 L

with N4 = 5 - 10'° cm~2, a 0.4pm channel withNp = 2 -
10" cm—3, and a0.1%m cap-layerwithVp = 1.1-10% cm—3,
The process steps are: mesa and recess etching, ohmic contact
formation, oxidation, sputtering of dielectrics, definition of gates The device is modeled using a lumped-element, large-signal
with EBL, pad formation, passivation, air-bridge formation, anghodel. The model is valid for the non saturated region and ac-
dicing. The mesa and recess were defined by dry etching usgiiints for the channel conductance as a function of applied gate
a CF, /O, plasma. Ohmic contacts were formed by annealing|tage, which should be sufficient for a resistive mixer oper-
nickel at 1000°C. The gate length is 0.bm and the gate met- ating at low frequency (S-band).
a.”ization iS AU/PUT| The deViceS are paSSiVated W|t§i\ﬁ| The equiva'ent Sma"_signa| Circuit iS Shown in F|g 1. The
The saturated drain currenfy,,, is 160 mA/mm and the gmall-signal model used in this work differs from standard
dc-transconductancg,,, is 24 mS/mm. The on-resistaneg,, models; the drain and source resistances are replaced by a
is 232 - mm. FromS-parameter measurements on a 200 resjstance in parallell with a capacitance. This empirical model
MESFET, an extrinsic transit frequengi; c.¢, 0f 6.3 GHz and  accounts for the observed frequency dependence in the source
amaximum frequency of oscillatiofin.x, 0f 37 GHz atd’y; of  and drain resistances. The main purpose of this model is to
40 V were calculated. The Class A output power were measuiggscribe thes-parameters as a function of applied gate-voltage
with load-pull at 3 GHz and’y, = 80 V. The power density is rather than have a strong connection to device physics.
1.6 W/mm (measured for a gate width of 0.4 mm). The device The parasitic pad capacitances are extracted using a standard
used in this experiment has 16 gate fingers 20@rofeach, thus procedure [4]. The remaining parasitic elements are extracted
having a total gate width of 3.2 mm. using an optimization procedure.

The channel conductance as a function of gate voltage is de-
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Drain—Source Resistance [Q]

Fig. 3. Photograph of the fabricated mixer. The LO and RF ports are to the left
and right, respectively; the IF port is at the top.
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measured drain-source resistances (after subtracting the para- Gate bias [Volt]

sitic resistance®t, and Ry); the remaining parameters are ex-
tracted using an optimization procedure. The extracted valueraf. 4. Conversion loss versus gate bias for different LO powers: 5.4 dBm
R; is so small that its effect is negligeble and thus the equi\,@j.rcles), 15.3 dBm (squares), and 25.2 dBm (crosses). Input RF power was
lent circuit could be simplified. Extracted model parameters apgiBm.
shown in Table I. In Fig. 2, modeled and measured drain-source
resistance is plotted versus gate bias. Drain-source resistance is
measured by taking the real part of the output port impedence
i.e., Se> converted taZ-domain.
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IV. DESIGN

The mixer is designed to work as a downconverter within the
S-band, with an LO frequency of 3.0 GHz and an input RF fre-
guency of 3.3 GHz. The mixer topology is identical to that first
proposed by Maas [5]. The LO is applied to the gate; two open
stubs acts as impedence matching and also short circuits the RF
signal. The RF is applied to the drain through a two section cou-
pled Chebysheff bandpass filter; an open stub is used as impe-
dence matching and for shortcircuiting the LO signal. The IFg. 5. Conversion loss versus LO power for different RF powers: 10 dBm
signal is extracted at the drain through high impedence line af#cles). 15 dBm (squares), and 18 dBm (crossses).

a low-pass filter. Radial stubs are used at the gate-bias and IF
ports as bandstop filters for the LO and RF signals, respectively.

The circuit is fabricated on a soft substrate (IsoClad—=
2.33), the circuit is gold-plated and soldered to a copper plate.
The SIC-MESFET is glued to a patch (grounded to the backside
by vias) and wire bonded into the circuit. A drawback with this
simple type of mounting is that the bond wires tend to be long,
almost 1.5 mm and that the thermal managementis poor. A pho-
tograph of the fabricated mixer is shown in Fig. 3.
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V. MEASUREMENTS
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The conversion loss (CL) versus gate bias was measured for RF Power [dBm]

an LO of 3.0 GHz and an RF of 3.3 GHz (Fig. 4). Optimum gate
bias for minimum CL was found to be6.7 V. The CL was then Fig. 6. Third-order intermodulation products. Input LO power was 27 dBm.
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40 : ; : 3 power, RF input signals are separated by 10 MHg =
: : : i 3290 Mhz, frr2 = 3300 Mhz). The RF power was limited
30k . ] to 11 dBm; thus, the 1 dB compression point could not be
— | * : : : } reached. Maximum [P measured was 35.7 dBm at an LO
E Lo : : power of 27 dBm (Fig. 6). The Ilfare measured for different
207t LO power (Fig. 7). The figure shows that the mixer has not
= : : : : reached saturation, this indicates that more available LO power
k- e S U L] could give even higher IIP
: : : : The measurements are compared to harmonic balance simu-
: : : : lations performed in the software ADS from Agilent (Fig. 8).
05 10 15 20 25 30
LO Power [dBm] VI. CONCLUSION
Fig. 7. Measured lIpversus LO power. A single-ended resistive SiIC-MESFET mixer was designed
and characterized. A conversion loss of 10.2 dB and andfP
30 35.7 dBm were measured at 3 GHz. This is, to our knowledge,
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Fig. 8. Simulated CL versus LO power; squares (simulations), solid [3]
(measurements).

measured versus LO power (Fig. 5), with the gate bias kept at[4]

the optimum value of-6.7 V. 5]
The third order intermodulation intercept point ()Pwas

measured using a two-tone measurement. The two, equal-

the best result reported for any resistive FET/HEMT mixer. It
is our belief that conversion loss can, by more careful mixer
design, be reduced to at least 6 dB. The mixer was not opti-
mized for low intermodulation, thus making further improve-
ments possible.
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